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A RECURSIVE FORMULA FOR WEIGHT DISTRIBUTION OF
HAMMING CODES

DAE SAN KIM

ABSTRACT. We derive a recursive formula determining the weight distribution
of the [n=(¢" —1)/(q—1), n—m, 3] Hamming code H(m, ¢). Here ¢ is a
prime power. The proof is based on Moisio’s idea of using Pless power moment
identity together with exponential sum techniques. We first prove the recursive
formula under the restriction (m,q— 1) = 1. Then we remove the restriction so
that the formula actually holds for any positive integer m and any prime power

q.

Dedicated to Professor Taekyun Kim on the Occasion of His Sixtieth Birthday

1. INTRODUCTION

This paper is a combined and enlarged version of the papers ([3], [4]), which
have never been published elsewhere.

The Hamming code is probably the first one that someone encounters when he
is taking a beginning course in coding theory. The g-ary Hamming code H (m, q) is
an [n=(¢"—1)/(¢—1), n—m, 3] code which is a single-error-correcting perfect
code. From now on, g will indicate a prime power unless otherwise stated. Also,
we assume m > 1.

In [6], Moisio discovered a handful of new power moments of Kloosterman
sums over Iy, with ¢ = 2". This was done, via Pless power moment identity, by
connecting moments of Kloosterman sums and frequencies of weights in the binary
Zetterberg code of length ¢+ 1, which were known by the work of Schoof and van
der Vlugt in [10]. Some new moments of Kloosterman sums were also found over
IF,, with ¢ = 3", by connecting those in the ternary Melas code of length g — 1
([71,[11]).

In this paper, we adopt Moisio’s idea of utilizing Pless power moment identity
and exponential sum techniques and prove the recursive formula in the following
theorem giving the weight distribution of H(m,q). We first show this under the
restriction (m,q — 1) = 1. Then we remove this restriction so that it actually holds
for any positive integer m and any prime power g.
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Theorem 1.1. Let {C,}}_(n = (¢" —1)/(qg — 1)) denote the weight distribution
of the g-ary Hamming code H(m, q). Then, for h with 1 <h <n,

Gy =(—=1)"g" "D (g" — 1)
h 1 . h . .
+ Y (=G Y nS(h) g (g 1) (0D,

i=0 t=i

where S(h,t) denotes the Stirling number of the second kind defined by

t

P (=D

=

[ —

(1) S(h.1) =

~

Cp =1, and it is easy to check that C; = C, =0, as it should be. A few next values
of Cp,’s were obtained, with the help of Mathematica, from the above formula.

Corollary 1.2. Let {C}}_o(n = (¢" —1)/(qg— 1)) denote the weight distribution
of the g-ary Hamming code H(m,q). Then

1 1 m
G =§(q "~ 1)(~q+4"),
1
Ca=7(d" = 1)(—6q+5¢* + 64"+ " — 64" ™),
1
Cs =—(q" — 1)(=36q + 54¢* — 264 4+ 364" + 6¢°"

T 5!
+q3m o 60q1+m + 35q2+m o 10q1+2m)’
1
Co =;(" = 1)(~240g +500q — 450" + 1544
+240qm +20L]2m + 10q3m +q4m _ 520q1+m
1 85q204m) | 55042+m 00553 tm _ 110g!+2m

G :%(qm —1)(—1800g +4710¢* — 60354 4 39404*
— 10444’ 4+ 1800¢™ — 904%™ 4 85¢°" 4 15¢*™"
+ " — 4620 4+ 150542 + 675547
—5215¢°™ 4162441 — 8054 2 — 735432
—245¢13m L 1754713m 2141 H4m),
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Cs =

Co =

Cio=

1
g(qm —1)(—15120g 4+ 471244* — 771964 +727794"

—37240¢° + 80284° + 15120¢™ — 32764*™ 4 840¢>™
+175¢"" +21¢°™ + ¢°" — 438484 T

+ 1793467 — 196031 47963247+

+ 67694721 — 878084+ 4526614+

— 131324 — 32764' 2" — 192364 "
—3080g! 3" 4427043 — 4764 T4 4322474
—28g1 M),

% (¢" —1)(—141120g + 5070244 — 10027364
+12214444* —9106444° 4 3820884° — 692644’
+141120¢™ — 574564 + 10864¢°™ + 19604
+3224°" + 28¢5 + ¢"™ — 4495684 ™
+165396¢> 1™ — 671164°+™ 49579364
+ 24662467 — 13494044° " + 11758744
—571116¢° " + 118124¢°" + 339364 2"

— 332584432 — 672844712 — 393964 T

+ 74844673 1 20449443m _ 781241 H4m
410332474 — 45364° T4 — 8404 5™

+ 546q2+5m _ 36q1+6m)7
1

To1¢

+20090832¢* — 19485852¢° + 11984244¢°

—4251240¢" + 6636964° + 14515204™ — 8933764*"
+ 1743844 4 21504¢*™ + 45364°™ + 5464°"
+36¢"" +¢*" — 49870084 " + 85752041+

— 156954041+ 46327341 1 120350884
+57977704**™) — 203936164 + 72368043 )
+23050848¢* ™ — 164233984° " + 666123645
— 11727004 ™ 4 1341360 2" — 46864804° 2"
—3264780¢° 2" — 5762404 3" 4 12339604> "
+1030260g* 3" —269325¢° 3" — 1170124 4"
422780844 — 1963924 4™ — 174304 5"

+ 2226047 — 94504° 5™ — 13804 6™

4 8707 10m — 4541 F7m),

q" —1)(—1451520q 4 58803844 — 135508324>
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The Hamming code was discovered by Hamming in late 1940’s. So it is sur-
prising that there are no such recursive formulas determining the weight distribu-
tions of the Hamming codes in the nonbinary cases. In the binary case, we have
the following well known formula which follows from elementary combinatorial
reasoning([5, p. 129]).

Theorem 1.3. Let {Cy}}_,(n = (2" — 1)) denote the weight distribution of the
binary Hamming code H(m,2). Then the weight distribution satisfies the following
recurrence relation:

C=1,C =0,
i+ D)Cin+CiH+n—i+1)Ciy =) i >1).
It is known ([9]) that, when (m,q — 1) = 1, H(m,q) is a cyclic code.
Theorem 1.4. Let n= (g™ —1)/(q— 1), where (m,q— 1) = 1. Let y be a primitive

element of Fyn. Then the cyclic code of length n with the defining zero i1 is
equivalent to the g-ary Hamming code H(m,q).

2. PRELIMINARIES

Let g = p” be a prime power. Then we will use the following notations through-
out this paper.

r—1
tr(x) =x+x" 4+ xP
the trace function Fy — F,

m—1

Tr(x) =x+x9+---4x7
the trace function Fyn — T,

the canonical additive character of T,
Am(x) =A(Tr(x))
the canonical additive character of Fyn.

The following lemma is well known.

Lemma 2.1. Forany o € F,

o=0
Y, Afow) = { & ’
F, 0, a#0.

For a positive integer s, the multiple Kloosterman sum Ky(a) (& € ), is de-
fined by

Ki(a)= Z Ay 4 Faxgoxgh).

Xy, xs €y

The following result follows immediately from Lemma 2.1.

Lemma 2.2. For an integer s > 1,

Y Ko@) = (~1)"

acly;
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Proof. ¥aers, Koo1(@0) = (S, A (1)) O
The following lemma is immediate.
Lemma 2.3. Let (m,q— 1) = 1. Then the following map is a bijection.
a—a” T — T
Theorem 2.4 (Thm. 3 of [8]). Forany a € IFZM
Y Aw(oxh) = (=1)"" (g — K1 (N(at)),

x€F*,
q
where N denotes the norm map N : Fyn — F,, defined by N(o) = a", with n =
(¢"=1)/(g—1).
The following theorem is due to Delsarte([5, P. 208]).
Theorem 2.5 (Delsarte). Let B be a linear code of length n over Fyn. Then
(Blr,) = Tr(B").

The following is a special case of the result stated in [1, Thm. 4.2], although
only the binary case is mentioned there. In fact, using Theorem 2.5 above, this can
be proved in exactly the same manner as described immediately after the proof of
Theorem 4.2 in [1].

Theorem 2.6. The dual H(m,q)* of H(m,q) is given by

H(m.g)*
={c(a) = (Tr(a)7Tr(ay<‘7—1)), . 7]"r(a},('l—l)(tl—l)))
|a S qu}.
Lemma 2.7. The map a v c(a) : Fgn — H(m,q)* is an isomorphism of F-vector
spaces.
Proof. The map is F,-linear, surjective and dimp, Fn = dimy H (m,q)*. O

Our recursive formula in Theorem 1.1 will be a consequence of the application
of Pless power moment identity([9]), which is equivalent to MacWilliams identity.

Theorem 2.8 (Pless power moment identity). Let C be an g-ary [n, k] code, and let
C; (resp. Ci-) denote the number of codewords of weight i in C (resp. in C*). Then,
forh=0,1,2,---

n min{n,h} ) h . i
) Yi'ci= Y (=1t Yt1S(ht)g" T (g — 1) (D),
i=0 i=0 t=i

where S(h,t) denotes the Stirling number of the second kind defined by (1).

3. PROOF OF THEOREM 1.1 WHEN (m,q—1) =1

In our discussion below, we will assume that (m,q — 1) = 1, so that H(m,q) is a
cyclic code with the defining zero y?~!, where ¥ is a primitive element of Fn.

Let i be an integer with 1 < h < n. Observe that the weight of the codeword
c(a), (a € Fyu), in Theorem 2.6 can be expressed as
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n—1

wie(a) =Y. (1-q" Y AlaTr(ay“ "))

i=0 ack,
(by Lemma 2.1)

n—1

=n—q 'Y Y An(aay'sV)

aclk, i=0
=n—q '(g-1D)"Y Y An(aaxi")
R, xEF,
3) =n—q '(qg=1)"(¢"—1)—q " (g—1)""
xY ¥ Am(0tax?™")
A€l xEFym

=n—q ' (g=1)"(¢" = 1)+ (-1)"g""
X Y Ky_1(a"N(a))  (by Theorem 2.4)

€l
=n—q (=17 (¢" = 1)+ (-1)"q"'
X Z Kn—1(aN(a)). (by Lemma 2.3)
o€l

We now apply Pless power moment identity in Theorem 2.8 with C = H (m,q)*.
On the one hand, the left hand side of (2) is

Z w(c(a))" (by Lemma 2.7)

ae]F;,,,

=Y (n—q ' (g-D) " (g"-D+(-1)"q""

ae]F;m
« X Kur(@N(@)" (by (3)
:qm__ll Y (n—gq ' g=D)7 (" =D+ (=)"g""
q ae]F;
< Y K i(ca))
ae]F;

=(¢"—1)(n—q (g=1) " (g"— 1)+ (-1)"q""
< Y Kyoi(c)
ae]Fj]
=(q"=1)(n—q " (q=1)""(¢"—1)+q ")
(by Lemma 2.2)

m

=" (g 1) (as =T

).
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On the other hand, by separating the term corresponding to 4 and noting S(h,h) =
1, the right hand side of (2) is

(=1)'Cphtg™ "
h—1 h
+ ;)(—l)in;t!S(hJ)qm*’(q— DTG
i= =i
So
g (g 1)
:(7 1 )hCh/’l!q'117h

h—1 h
+ Y (CD)'CY 1S(h1)g" (g — 1) (D)
i=0 t=i

Multiplying both sides of (4) by (—1)"g"™, we get the desired result. W

“)

4. PROOF OF THEOREM 1.1 WITHOUT THE RESTRICTION (m,qg—1) =1

We know that the formula in Theorem 1.1 holds for (m,q — 1) = 1. By the
recursive formula in Theorem 1.1, we see that all C; (i =0,1,2,---, n = (¢" —
1)/(g—1)) are formally polynomials in g with rational coefficients, which depend
on m (cf. Corollary 1.2 for the explicit expressions of C; for i < 10). Put C; =
P(gq;m), fori=0,1,2,---, n=(¢"—1)/(g—1). Then (1.1) can be rewritten as

RPy(qim) = (—1)ig"" =D (g" — 1)+
(5) ho1 _ h 7=
Y (= 1) B gam) Y 1S, )g" (g — 1) (:',‘- ) 7

i=0 1=i
(I<h<n=(¢"-1)/(g—1)).
Let m, h be fixed positive integers. Then the left hand side and the right hand

side of (5) are formally polynomials in g and (5) is valid whenever ¢ is replaced by
prime powers p” satisfying (m,p" —1)=land h < (p" —1)/(p" = 1).

So it is enough to show that there are infinitely many prime powers p” such
that (m, p” — 1) = 1, since then (5) is really a polynomial identity in g, so that the
restriction of our concern can be removed. There are three cases to be considered.

Case 1) 2 does not divide m.
Let m = p}'p3*---p&, where pi,ps,---,p, are distinct odd primes and e;’s are
positive integers. Then, by Dirichlet’s theorem on arithmetic progressions, there
are infinitely many prime numbers p such that p =2 (mod m). For each such an p,
p =2 (mod p;), for j=1,---,r. Then p; does not divide p — 1, for all j, so that
all p; is relatively prime to p — 1. So (m, p— 1) = 1, for all such primes p.

Case 2) 2 is the only prime divisor of m.
In this case, 2/ — 1(I = 1,2,---) are all relatively prime to .

Case 3) 2 and some odd prime divide m.
Let m = 2°my, my = p{'p5*--- p%, where e,ey,--- ,e,,r are positive integers and
p1,D2,- -, pr are distinct odd primes. Noting that (2,m;) = 1, we let f = ord,,,2
be the order of 2 modulo m;. Then 2/ = 1 (mod m;), for all positive integers .

So 2!/ =1 (mod p)), for all j =1,---,r. Thus 2//*! =2 (mod p;), for all j, and
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hence p; does not divide 2//*! — 1, for all j. This implies that (m,2//*!1 —1) =1,
for all positive integers [. Wl

5. FURTHER REMARK

Here we remark that the weight distribution of H(m,q) is well known, which is
given in terms of Krawtchouk polynomials. Krawtchouk polynomials are discrete
orthogonal polynomials associated with coding theory and binomial distribution,
which was introduced by Krawtchouk in 1929. They are defined by

® k=Y a0 () (000 o<k<n
X) = — — n
k .7 q J k _ J i = = )
Jj=0
which has degree k. Among other things, they satisfy the orthogonality relations:
" n . . . n

¥ (1) 0= vixeemza = a1 ("o

i=0
The following formula is known to be equivalent to the Pless power moment iden-
tity in Theorem 2.8 ([2, p. 257]).

Theorem 5.1. Let C be an g-ary [n, k] code, and let C; (resp. C;-) denote the number
of codewords of weight i in C (resp. in C*). Then, for 0 <k <n,

1 & na .
) G = i Y k().
i=0

Let C be the [n = (¢" —1)/(q — 1),m] g-ary simplex code. Then dual code C*+
is the Hamming code H(m,q). It is known that the weight distribution of C is
Co=1, Cqm—l =¢g" —1, and C; = 0, for all other i ([2, Theorem 2.7.5]). Now, from
(6) and (7), it is immediate to see that, for 0 < k < n,

Gt = a7 (K{4(0)+(g" — DK (g™ )
= (ta=04(}) + @ - D).

6. CONCLUSION

As we remarked in Section 5, the weight distribution of the Hamming code
H(m,q) is well known, which can be described in terms of Krawtchouk polynomi-
als K;"¥(x). In the binary case, there has been a recursive formula, which follows
from simple combinatorial reasoning, giving the weight distribution of the Ham-
ming codes. However, it is surprising that there have been no recursive formulas
giving the weight distributions of the Hamming codes in the nonbinary case. In
this paper, we were able to derive the recursive formula in Theorem 1.1 by adopt-
ing Moisio’s idea of using the Pless power moment idnetity and exponential sum
techniques.
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